Model-Based Estimation of Ankle Joint Stiffness
نویسندگان
چکیده
We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model's inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements.
منابع مشابه
Effectiveness of Joint Stiffness and Power Alternations in Different Shoe Insole Hardness on Injury Prevention During Jump-Landing
Background: Studies on how the shoe insole hardness regulate joint stiffness and transfer energy in the lower extremity during jump landing are scarce. The current study aimed to determine the effectiveness of shoe insole changes in joint power and stiffness during landing from jumps. Methods: Fifteen healthy male athletes volunteered to perform jump-landing in various shoe insole conditions. ...
متن کاملEstimation of Time-Varying, Intrinsic and Reflex Dynamic Joint Stiffness during Movement. Application to the Ankle Joint
Dynamic joint stiffness determines the relation between joint position and torque, and plays a vital role in the control of posture and movement. Dynamic joint stiffness can be quantified during quasi-stationary conditions using disturbance experiments, where small position perturbations are applied to the joint and the torque response is recorded. Dynamic joint stiffness is composed of intrins...
متن کاملDevelopment of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.
The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigatio...
متن کاملAdaptation of multi-joint coordination during standing
25 Standing balance requires multi-joint coordination between the ankles and hips. We investigated 26 how humans adapt their multi-joint coordination to adjust to various conditions and whether the 27 adaptation differed between healthy young participants and healthy elderly. Balance was disturbed 28 by push/pull rods, applying two continuous and independent force disturbances at the level of t...
متن کاملCorrelation between lower body stiffness and agility in racket-sports athlete
Stiffness is an index for determination of elastic properties of body and its optimum range is different in various motion patterns. The Spring-mass model is used for calculating stiffness. In this method, the whole leg is modeled with a linear simple spring. The aim of this study is determination of lower body stiffness and evaluation of its correlation with agility, as dominant motion patt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017